Adopting accurate and efficient spectrum sensing policy is crucial in allowing cognitive radio users to be aware of the surrounding parameters related to the radio environment characteristics. Especially, in Ad hoc networks scenario, where dynamic spectrum access is highly required, since the most of the spectrum is already assigned statistically, and the unlicensed bands are becoming overcrowded. This is due to the multiplicity of wireless communication technologies that operate in those bands, and the increasing number of connected devices. In this paper, a spectrum sensing algorithm that combines the Support Vector Machines (SVM) supervised learning technique with the Multiple Signal Characterization (MUSIC) subspace method is used. Our ultimate objective is detecting the presence of primary users (technology signals) in the band of interest. The node’s receivers which make up the network collect samples from the radio environment, estimate the number of primary user signals and the corresponding carrier frequencies. Simulations are conducted to demonstrate the efficiency of the proposed SVM based algorithm in detecting the presence of primary users based on lost-detection and false alarm probabilities evaluation.

SVM-MUSIC algorithm for spectrum sensing in cognitive radio ad-hoc networks

EL BARRAK, SOUMAYA;PULIAFITO, Antonio;SERRANO, Salvatore
2017-01-01

Abstract

Adopting accurate and efficient spectrum sensing policy is crucial in allowing cognitive radio users to be aware of the surrounding parameters related to the radio environment characteristics. Especially, in Ad hoc networks scenario, where dynamic spectrum access is highly required, since the most of the spectrum is already assigned statistically, and the unlicensed bands are becoming overcrowded. This is due to the multiplicity of wireless communication technologies that operate in those bands, and the increasing number of connected devices. In this paper, a spectrum sensing algorithm that combines the Support Vector Machines (SVM) supervised learning technique with the Multiple Signal Characterization (MUSIC) subspace method is used. Our ultimate objective is detecting the presence of primary users (technology signals) in the band of interest. The node’s receivers which make up the network collect samples from the radio environment, estimate the number of primary user signals and the corresponding carrier frequencies. Simulations are conducted to demonstrate the efficiency of the proposed SVM based algorithm in detecting the presence of primary users based on lost-detection and false alarm probabilities evaluation.
2017
9783319679099
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3115062
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact