This thesis focuses on the thermodynamical study of water interaction with some biosystems, illustrating how water plays an important role in "driving" the properties of such systems. In particular, the experiments were conducted by means of Nuclear Magnetic Resonance technique and by passing from methanol, the simplest amphiphilic molecule, to a more complex system such as lysozyme, an enzyme protein with bactericidal activity. Nuclear Magnetic Resonance measurements were performed by means of a Bruker Avance spectrometer operating at 700 MHz and by using various techniques and sequences, including the Pulsed Field Gradient Stimulated Echo and the High-Resolution Magic Angle Spinning. The instrumentation used is located in the Laboratory of Physics of Complex Systems managed by Prof. F. Mallamace at the Department of Mathematical and Informatics Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina. Many dynamic and thermodynamic quantities of the investigated systems have been studied, including diffusion obtained by the use of magnetic field gradients which allow to perform a spatial encoding of spin frequencies, thus able to detect a shift of the same during observation time. In particular, the universality and relevance of extremely important temperatures for water have been observed even in processes characterizing aqueous systems. An example is the "magic" temperature of about 315 K at which a change in water dynamics occurs as water passes from being a normal fluid to being a complex and anomalous liquid, and vice versa. In the case of aqueous systems, e.g., in water and protein solution, such temperature represents the beginning of the unfolding process of the protein in which it begins to denature and to assume the state of a simple linear polypeptide chain. The results obtained also made it possible to highlight the importance of the hydrogen bond in relation to its competition with the hydrophobic effect. In fact, it is such a competition that generates a change in the dynamics of the aqueous systems with respect to the case of pure systems. In this work, we collaborate with Prof. E. H. Stanley of the Boston University, Boston (USA) and Prof. S.-H. Chen of the Department of Nuclear Science and Engineering of the Massachusetts Institute of Technology, Boston (USA).
Il presente lavoro di tesi è incentrato sullo studio termodinamico dell’interazione dell’acqua con alcuni biosistemi, illustrando come l’acqua rivesta un ruolo importante nel "guidare" le proprietà di tali sistemi. In particolare, gli esperimenti sono stati condotti utilizzando la tecnica della Risonanza Magnetica Nucleare, passando dal metanolo, la più semplice molecola anfifilica, ad un sistema più complesso come il lisozima, una proteina enzimatica dotata di attività battericida. Le misure di Risonanza Magnetica Nucleare sono state eseguite con uno spettrometro Avance della Bruker operante a 700 MHz ed utilizzando diverse tecniche e sequenze, tra cui il "Pulsed Field Gradient Stimulated Echo" e la "High-Resolution Magic Angle Spinning". La strumentazione utilizzata è localizzata nel Laboratorio di Fisica dei Sistemi Complessi gestito dal Prof. F. Mallamace, presso il "Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra" (MIFT) dell’Università di Messina. Sono stati oggetto di studio molte grandezze dinamiche e termodinamiche dei sistemi investigati, tra cui la diffusione, misure ottenute mediante l’utilizzo di gradienti di campo magnetico che permettono di effettuare una codifica spaziale delle frequenze di precessione degli spin attivi, in grado quindi di rilevare uno spostamento degli stessi durante il tempo di osservazione. In particolare l’universalità e la rilevanza di temperature estremamente importanti per l’acqua sono state osservate anche nei processi caratterizzanti i sistemi acquosi. Un esempio è dato dalla temperatura "magica" di circa 315 K alla quale avviene un cambiamento nella dinamica dell’acqua in quanto l’acqua passa dall’essere un fluido normale all’essere un liquido complesso ed anomalo, e viceversa. Nel caso dei sistemi acquosi, per esempio acqua e proteina, tale temperatura rappresenta l’inizio del processo di "unfolding" della proteina in cui essa comincia a denaturare per assumerere lo stato di semplice catena polipeptidica lineare. I risultati ottenuti hanno permesso anche di mettere in evidenza l’importanza del legame idrogeno in relazione alla sua competizione con l’effetto idrofobico. Infatti, è tale competizione che genera un cambiamento nella dinamica dei sistemi acquosi rispetto al caso dei sistemi puri. Tale lavoro ha potuto avvalersi di collaborazioni con il gruppo del Prof. E. H. Stanley del "Center for Polymer Studies and Department of Physics" della Boston University, Boston (USA) e del Prof. S.-H. Chen del "Department of Nuclear Science and Engineering" del Massachusetts Institute of Technology, Boston (USA).
Thermodynamics of water and biosystems
VASI, SEBASTIANO
2017-12-05
Abstract
This thesis focuses on the thermodynamical study of water interaction with some biosystems, illustrating how water plays an important role in "driving" the properties of such systems. In particular, the experiments were conducted by means of Nuclear Magnetic Resonance technique and by passing from methanol, the simplest amphiphilic molecule, to a more complex system such as lysozyme, an enzyme protein with bactericidal activity. Nuclear Magnetic Resonance measurements were performed by means of a Bruker Avance spectrometer operating at 700 MHz and by using various techniques and sequences, including the Pulsed Field Gradient Stimulated Echo and the High-Resolution Magic Angle Spinning. The instrumentation used is located in the Laboratory of Physics of Complex Systems managed by Prof. F. Mallamace at the Department of Mathematical and Informatics Sciences, Physical Sciences and Earth Sciences (MIFT), University of Messina. Many dynamic and thermodynamic quantities of the investigated systems have been studied, including diffusion obtained by the use of magnetic field gradients which allow to perform a spatial encoding of spin frequencies, thus able to detect a shift of the same during observation time. In particular, the universality and relevance of extremely important temperatures for water have been observed even in processes characterizing aqueous systems. An example is the "magic" temperature of about 315 K at which a change in water dynamics occurs as water passes from being a normal fluid to being a complex and anomalous liquid, and vice versa. In the case of aqueous systems, e.g., in water and protein solution, such temperature represents the beginning of the unfolding process of the protein in which it begins to denature and to assume the state of a simple linear polypeptide chain. The results obtained also made it possible to highlight the importance of the hydrogen bond in relation to its competition with the hydrophobic effect. In fact, it is such a competition that generates a change in the dynamics of the aqueous systems with respect to the case of pure systems. In this work, we collaborate with Prof. E. H. Stanley of the Boston University, Boston (USA) and Prof. S.-H. Chen of the Department of Nuclear Science and Engineering of the Massachusetts Institute of Technology, Boston (USA).File | Dimensione | Formato | |
---|---|---|---|
Tesi_SebastianoVasi.pdf
accesso aperto
Descrizione: Tesi di Dottorato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
12.71 MB
Formato
Adobe PDF
|
12.71 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.