Interval sensitivity analysis of linear discretized structures with uncertain-but-bounded parameters subjected to stationary multi-correlated Gaussian stochastic processes is addressed. The proposed procedure relies on the use of the so-called Interval Rational Series Expansion (IRSE), recently proposed by the authors as an alternative explicit expression of the Neumann series expansion for the inverse of a matrix with a small rank-r modification and properly extended to handle also interval matrices. The IRSE allows to derive approximate explicit expressions of the interval sensitivities of the meanvalue vector and Power Spectral Density (PSD) function matrix of the interval stationary stochastic response. The effectiveness of the proposed method is demonstrated through numerical results pertaining to a seismically excited three-storey frame structure with interval Young's moduli of some columns.

STOCHASTIC SENSITIVITY ANALYSIS OF STRUCTURAL SYSTEMS WITH INTERVAL UNCERTAINTIES

Muscolino, G;Santoro, R;Sofi, A
2014-01-01

Abstract

Interval sensitivity analysis of linear discretized structures with uncertain-but-bounded parameters subjected to stationary multi-correlated Gaussian stochastic processes is addressed. The proposed procedure relies on the use of the so-called Interval Rational Series Expansion (IRSE), recently proposed by the authors as an alternative explicit expression of the Neumann series expansion for the inverse of a matrix with a small rank-r modification and properly extended to handle also interval matrices. The IRSE allows to derive approximate explicit expressions of the interval sensitivities of the meanvalue vector and Power Spectral Density (PSD) function matrix of the interval stationary stochastic response. The effectiveness of the proposed method is demonstrated through numerical results pertaining to a seismically excited three-storey frame structure with interval Young's moduli of some columns.
2014
978-0-7918-5625-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3124423
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact