The prediction of failures in rotating machines is an important issue in industries to improve safety, to reduce the cost of maintenance and to prevent accidents. In this paper a predictive maintenance algorithm, based on the analysis of the orbits shape of the rotor shaft is proposed. It is based on an autonomous image pattern recognition algorithm, implemented by using a Convolutional Neural Network (CNN). The CNN has been designed, by using a suitable database, to recognize the orbits shape, allowing both fault detection and classification.

Deep Learning Algorithm for Predictive Maintenance of Rotating Machines Through the Analysis of the Orbits Shape of the Rotor Shaft

Caponetto R.;Xibilia M. G.
2019-01-01

Abstract

The prediction of failures in rotating machines is an important issue in industries to improve safety, to reduce the cost of maintenance and to prevent accidents. In this paper a predictive maintenance algorithm, based on the analysis of the orbits shape of the rotor shaft is proposed. It is based on an autonomous image pattern recognition algorithm, implemented by using a Convolutional Neural Network (CNN). The CNN has been designed, by using a suitable database, to recognize the orbits shape, allowing both fault detection and classification.
2019
978-3-030-22963-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3144331
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact