This paper focuses on multi-vehicle stochastic assignment to an urban transportation network, where paths likely overlap; route choice behavior is modeled through a Probit model, whose application requires Montecarlo techniques. Main aim is to compare two different pseudo-random generators, Mersenne-Twister and Sobol, and four step size strategies for solution algorithms based on the Method of Successive Averages.

Stochastic Multi-Vehicle Assignment to Urban Transportation Networks

Di Gangi M.
Penultimo
Membro del Collaboration Group
;
2019

Abstract

This paper focuses on multi-vehicle stochastic assignment to an urban transportation network, where paths likely overlap; route choice behavior is modeled through a Probit model, whose application requires Montecarlo techniques. Main aim is to compare two different pseudo-random generators, Mersenne-Twister and Sobol, and four step size strategies for solution algorithms based on the Method of Successive Averages.
File in questo prodotto:
File Dimensione Formato  
2019 - Stochastic Multi-Vehicle Assignment To Urban Transportation networks IEEE.pdf

solo gestori archivio

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/3147680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 1
social impact