This manuscript aims at showing the effects of feature selection and manifold reduction methods in dealing with the wall-following problem in mobile robotics, a well-known nonlinearly separable classification problem in which sensor recordings are associated to controlled motor responses. The capabilities of state manifold reduction in Echo State Networks (ESNs) through Laplacian Eigenmaps (LEs) are described in terms of noise rejection over the trained weights. Furthermore, various machine learning-based and data mining-based methodologies are applied to show the advantages of using the most informative contents drawn from the original sensor readings.

Structural and input reduction in a ESN for robotic navigation tasks

Patane, Luca
Secondo
;
2019-01-01

Abstract

This manuscript aims at showing the effects of feature selection and manifold reduction methods in dealing with the wall-following problem in mobile robotics, a well-known nonlinearly separable classification problem in which sensor recordings are associated to controlled motor responses. The capabilities of state manifold reduction in Echo State Networks (ESNs) through Laplacian Eigenmaps (LEs) are described in terms of noise rejection over the trained weights. Furthermore, various machine learning-based and data mining-based methodologies are applied to show the advantages of using the most informative contents drawn from the original sensor readings.
2019
978-1-7281-4569-3
File in questo prodotto:
File Dimensione Formato  
CI81_SMC_08914234.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 177.68 kB
Formato Adobe PDF
177.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3148847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact