In this paper an insect-inspired body size learning algorithm is adopted in a humanoid robot and a control system, mainly developed with spiking neurons, is proposed. It implements an evaluation of distances by using the typical parallax method performed by different insect species, such as Drosophila melanogaster. A Darwin-OP robot was used as testbed to demonstrate the potential application of the learning method on a humanoid structure. The robot, equipped with a hand extension, was free to move in an environment to discover objects. As consequence, it was able to learn, using an operant conditioning, which objects can be reached, via the estimation of their distance on varying the length of the equipped tool. The learning scheme was tested both in a dynamical simulation environment and with the Darwin-OP robot.
Titolo: | Insect-Inspired Body Size Learning Model on a Humanoid Robot |
Autori: | |
Data di pubblicazione: | 2018 |
Serie: | |
Abstract: | In this paper an insect-inspired body size learning algorithm is adopted in a humanoid robot and a control system, mainly developed with spiking neurons, is proposed. It implements an evaluation of distances by using the typical parallax method performed by different insect species, such as Drosophila melanogaster. A Darwin-OP robot was used as testbed to demonstrate the potential application of the learning method on a humanoid structure. The robot, equipped with a hand extension, was free to move in an environment to discover objects. As consequence, it was able to learn, using an operant conditioning, which objects can be reached, via the estimation of their distance on varying the length of the equipped tool. The learning scheme was tested both in a dynamical simulation environment and with the Darwin-OP robot. |
Handle: | http://hdl.handle.net/11570/3148851 |
ISBN: | 978-1-5386-8183-1 |
Appare nelle tipologie: | 14.d.3 Contributi in extenso in Atti di convegno |