Common design of a robot searching for a target emitting sensory stimulus (e.g. odor or sound) makes use of the gradient of the sensory intensity. However, the intensity may decay rapidly with distance to the source, then weak signal-to-noise ratio strongly limits the maximal distance at which the robot performance is still acceptable. We propose a simple deterministic platform for investigation of the searching problem in an uncertain environment with low signal to noise ratio. The robot sensory layer is given by a differential sensor capable of comparing the stimulus intensity between two consecutive steps. The sensory output feeds the motor layer through two parallel sensory-motor pathways. The first "reflex" pathway implements the gradient strategy, while the second "integrating" pathway processes sensory information by discovering statistical dependences and eventually correcting the results of the first fast pathway. We show that such parallel sensory information processing allows greatly improve the robot performance outside of the robot safe area with high signal to noise ratio.

Sensory-motor neural loop discovering statistical dependences among imperfect sensory perception and motor response

Patane L.;
2007-01-01

Abstract

Common design of a robot searching for a target emitting sensory stimulus (e.g. odor or sound) makes use of the gradient of the sensory intensity. However, the intensity may decay rapidly with distance to the source, then weak signal-to-noise ratio strongly limits the maximal distance at which the robot performance is still acceptable. We propose a simple deterministic platform for investigation of the searching problem in an uncertain environment with low signal to noise ratio. The robot sensory layer is given by a differential sensor capable of comparing the stimulus intensity between two consecutive steps. The sensory output feeds the motor layer through two parallel sensory-motor pathways. The first "reflex" pathway implements the gradient strategy, while the second "integrating" pathway processes sensory information by discovering statistical dependences and eventually correcting the results of the first fast pathway. We show that such parallel sensory information processing allows greatly improve the robot performance outside of the robot safe area with high signal to noise ratio.
2007
978-0819467201
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3150514
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact