In this paper we study the problem of obstacle avoidance for a redundant manipulator. The manipulator is controlled through an already developed recurrent neural network, called MMC-model (Mean of Multiple Computation), able to solve the kinematics of manipulators in any configuration. This approach solves both problems of direct and inverse kinematics by simple numerical iterations. The MMC-model here proposed is constituted by a linear part that performs the topological analysis without any constraint and by a second layer, with non-linear blocks used to add the constraints related to both the mechanical structure of the manipulator and the obstacles located in the operative space. The control architecture was evaluated in simulation for a planar manipulator with three links. The robot starting from a given initial configuration is able to reach a target position chosen in the operative space avoiding collisions with an obstacle placed in the plane. The obstacle is identified by simulated sensors placed on each link, they can measure the distance between link and obstacle. The reaction to the obstacle proximity can be modulated through a damping factor that improves the smoothing of the robot trajectory. The good results obtained open the way to a hardware implementation for the real-time control of a redundant manipulator.

An Obstacle avoidance method for a redundant manipulator controlled through a recurrent neural network

Patane L.
2007-01-01

Abstract

In this paper we study the problem of obstacle avoidance for a redundant manipulator. The manipulator is controlled through an already developed recurrent neural network, called MMC-model (Mean of Multiple Computation), able to solve the kinematics of manipulators in any configuration. This approach solves both problems of direct and inverse kinematics by simple numerical iterations. The MMC-model here proposed is constituted by a linear part that performs the topological analysis without any constraint and by a second layer, with non-linear blocks used to add the constraints related to both the mechanical structure of the manipulator and the obstacles located in the operative space. The control architecture was evaluated in simulation for a planar manipulator with three links. The robot starting from a given initial configuration is able to reach a target position chosen in the operative space avoiding collisions with an obstacle placed in the plane. The obstacle is identified by simulated sensors placed on each link, they can measure the distance between link and obstacle. The reaction to the obstacle proximity can be modulated through a damping factor that improves the smoothing of the robot trajectory. The good results obtained open the way to a hardware implementation for the real-time control of a redundant manipulator.
2007
978-0819467201
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3150596
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact