We study the asymptotic as t ! 1behavior of solutions u(x, t) of the Cauchy problem and the mixed initial boundary value problem for a second-order hyperbolic equation with periodic coefficients in R1 and on the semi-axis. In the case of non-homogeneous equation, initial and boundary data are zero, and the right-hand side of the equation is of the form f(x) exp(−i!t), where ! > 0 is real.

Behavior of Solutions of the Cauchy Problem and the Mixed Initial Boundary Value Problem for an Inhomogeneous Hyperbolic Equation with Periodic Coefficients

Nordo, Giorgio
Secondo
Investigation
;
2020-01-01

Abstract

We study the asymptotic as t ! 1behavior of solutions u(x, t) of the Cauchy problem and the mixed initial boundary value problem for a second-order hyperbolic equation with periodic coefficients in R1 and on the semi-axis. In the case of non-homogeneous equation, initial and boundary data are zero, and the right-hand side of the equation is of the form f(x) exp(−i!t), where ! > 0 is real.
978-3-030-50459-5
978-3-030-50460-1
File in questo prodotto:
File Dimensione Formato  
matevossian-nordo-vestyak_2020.pdf

solo gestori archivio

Descrizione: Behavior of Solutions of the Cauchy Problem and the Mixed Initial Boundary Value Problem for an Inhomogeneous Hyperbolic Equation with Periodic Coefficients
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 564.83 kB
Formato Adobe PDF
564.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
3172991.pdf

solo utenti autorizzati

Descrizione: ARTICOLO PRINCIPALE
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 291.65 kB
Formato Adobe PDF
291.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3172991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact