Gasification and pyrolysis are very promising technologies for clean energy production especially from low rank fuels. Biomass and wastes with high chlorine, alkali and even heavy metals content are fuels preferential for thermal utilization. However, several problems during combustion in conventional steam boilers occurs e.g. slagging, fouling, chlorine corrosion, boiler efficiency deterioration. New efficient and cost effective technologies are needed, even in small-scale applications. The main objective of this work was to compare the thermochemical behaviour and process parameters effects of different biomass under air gasification and pyrolysis conditions. Three important fuels for European power industry were selected: woody biomass and two residual biomass, such as oat straw and dried citrus wastes. In order to evaluate the possibility to use different feedstocks or to combine and/or integrate them in thermochemical processes, a comparison among typical and untypical feedstocks is needed. Tests performed on small scale fixed bed reactor show the gas yield, its composition and LHV parameter. The results were performed in Royal Institute of Technology (KTH) in Sweden during BRISK program (Biofuels Research Infrastructure for Sharing Knowledge).

Gasification and pyrolysis of different biomasses in lab scale system: A comparative study

Prestipino M.;
2016-01-01

Abstract

Gasification and pyrolysis are very promising technologies for clean energy production especially from low rank fuels. Biomass and wastes with high chlorine, alkali and even heavy metals content are fuels preferential for thermal utilization. However, several problems during combustion in conventional steam boilers occurs e.g. slagging, fouling, chlorine corrosion, boiler efficiency deterioration. New efficient and cost effective technologies are needed, even in small-scale applications. The main objective of this work was to compare the thermochemical behaviour and process parameters effects of different biomass under air gasification and pyrolysis conditions. Three important fuels for European power industry were selected: woody biomass and two residual biomass, such as oat straw and dried citrus wastes. In order to evaluate the possibility to use different feedstocks or to combine and/or integrate them in thermochemical processes, a comparison among typical and untypical feedstocks is needed. Tests performed on small scale fixed bed reactor show the gas yield, its composition and LHV parameter. The results were performed in Royal Institute of Technology (KTH) in Sweden during BRISK program (Biofuels Research Infrastructure for Sharing Knowledge).
2016
978-1-5108-3113-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3178675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 9
social impact