Nowadays the automotive market is oriented to the production of hybrid or electric propulsion vehicle equipped with Energy Management System that aims to minimize the consumption of fossil fuel. The EMS, generally, performs a local and not global optimization of energy management due to the impossibility of predicting the user's energy demand and driving conditions. The aim of this research is to define a driving cycle (speed time) knowing only the starting and the arrival point defined by the driver, considering satellite data and previous experiences. To achieve this goal, the data relating to the energy expenditure of a car (e.g. speed, acceleration, road inclination) will be acquired, using on-board acquisition system, during road sections in the city of Messina. At the same time, the traffic level counterplot and others information provided, for these specific sections, from GPS acquisition software will be collected. On-board and GPS data will be compared and, after considering an adequate number of acquisitions, each value of the traffic level will be associated with a driving cycle obtained by processing the acquired data. After that, the numerical model of a car will be created which will be used to compare the energy demand of two driving cycles. The first one acquired on a section with a random starting and destination point inside the historic city centre of Messina. The second is the one assigned, for that same section, considering only the value of the traffic level counterplot.
Passenger Car Energy Demand Assessment: A New Approach Based on Road Traffic Data
Previti U.Primo
;Brusca S.Secondo
;Galvagno A.Ultimo
2020-01-01
Abstract
Nowadays the automotive market is oriented to the production of hybrid or electric propulsion vehicle equipped with Energy Management System that aims to minimize the consumption of fossil fuel. The EMS, generally, performs a local and not global optimization of energy management due to the impossibility of predicting the user's energy demand and driving conditions. The aim of this research is to define a driving cycle (speed time) knowing only the starting and the arrival point defined by the driver, considering satellite data and previous experiences. To achieve this goal, the data relating to the energy expenditure of a car (e.g. speed, acceleration, road inclination) will be acquired, using on-board acquisition system, during road sections in the city of Messina. At the same time, the traffic level counterplot and others information provided, for these specific sections, from GPS acquisition software will be collected. On-board and GPS data will be compared and, after considering an adequate number of acquisitions, each value of the traffic level will be associated with a driving cycle obtained by processing the acquired data. After that, the numerical model of a car will be created which will be used to compare the energy demand of two driving cycles. The first one acquired on a section with a random starting and destination point inside the historic city centre of Messina. The second is the one assigned, for that same section, considering only the value of the traffic level counterplot.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.