We exploit the feasibility of predictive modeling combined with the support given by a suitably defined IoT Cloud Infrastructure in the attempt of assessing and reporting relative performances for user-specific settings during a bike trial. The matter is addressed by introducing a suitable dynamical system whose state variables are the so-called origin-destination (OD) flow deviations obtained from prior estimates based on historical data recorded by means of mobile sensors directly installed in each bike through a fast real-time processing of big traffic data. We then use the Kalman filter theory in order to dynamically update an assignment matrix in such a context and gain information about usual routes and distances. This leads us to a dynamical ranking system for the users of the bike trial community making the award procedure more transparent.

Modeling Users’ Performance: Predictive Analytics in an IoT Cloud Monitoring System

Di Salvo R.
;
Galletta A.
;
Villari M.
2020-01-01

Abstract

We exploit the feasibility of predictive modeling combined with the support given by a suitably defined IoT Cloud Infrastructure in the attempt of assessing and reporting relative performances for user-specific settings during a bike trial. The matter is addressed by introducing a suitable dynamical system whose state variables are the so-called origin-destination (OD) flow deviations obtained from prior estimates based on historical data recorded by means of mobile sensors directly installed in each bike through a fast real-time processing of big traffic data. We then use the Kalman filter theory in order to dynamically update an assignment matrix in such a context and gain information about usual routes and distances. This leads us to a dynamical ranking system for the users of the bike trial community making the award procedure more transparent.
2020
978-3-030-44768-7
978-3-030-44769-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3203124
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact