The aim of this study is to characterize modules and hubs within the multimodal vestibular system and, particularly, to test the centrality of posterior peri-sylvian regions. Structural connectivity matrices from 50 unrelated healthy right-handed subjects from the Human Connectome Project (HCP) database were analyzed using multishell diffusion-weighted data, probabilistic tractography (constrained spherical-deconvolution informed filtering of tractograms) in combination with subject-specific grey matter parcellations. Network nodes included parcellated regions within the vestibular, pre-motor and navigation system. Module calculation produced two and three modules in the right and left hemisphere, respectively. On the right, regions were grouped into a vestibular and pre-motor module, and into a visual-navigation module. On the left this last module was split into an inferior and superior component. In the thalamus, a region comprising the mediodorsal and anterior complex, and lateral and inferior pulvinar, was included in the ipsilateral navigation module, while the remaining thalamus was clustered with the ipsilateral vestibular pre-motor module. Hubs were located bilaterally in regions encompassing the inferior parietal cortex and the precuneus. This analysis revealed a dorso-lateral path within the multi-modal vestibular system related to vestibular / motor control, and a ventro-medial path related to spatial orientation / navigation. Posterior peri-sylvian regions may represent the main hubs of the whole modular network.

Structural connectome of the human vestibular, pre-motor, and navigation network ∗

Indovina I.
Primo
;
2018-01-01

Abstract

The aim of this study is to characterize modules and hubs within the multimodal vestibular system and, particularly, to test the centrality of posterior peri-sylvian regions. Structural connectivity matrices from 50 unrelated healthy right-handed subjects from the Human Connectome Project (HCP) database were analyzed using multishell diffusion-weighted data, probabilistic tractography (constrained spherical-deconvolution informed filtering of tractograms) in combination with subject-specific grey matter parcellations. Network nodes included parcellated regions within the vestibular, pre-motor and navigation system. Module calculation produced two and three modules in the right and left hemisphere, respectively. On the right, regions were grouped into a vestibular and pre-motor module, and into a visual-navigation module. On the left this last module was split into an inferior and superior component. In the thalamus, a region comprising the mediodorsal and anterior complex, and lateral and inferior pulvinar, was included in the ipsilateral navigation module, while the remaining thalamus was clustered with the ipsilateral vestibular pre-motor module. Hubs were located bilaterally in regions encompassing the inferior parietal cortex and the precuneus. This analysis revealed a dorso-lateral path within the multi-modal vestibular system related to vestibular / motor control, and a ventro-medial path related to spatial orientation / navigation. Posterior peri-sylvian regions may represent the main hubs of the whole modular network.
2018
978-1-5386-3646-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3210480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact