In this study we investigate the muscle coordination underlying the execution of a pedaling exercise across different biomechanical demands, by using the muscle synergies paradigm. 9 non professional subjects performed a cycling exercise using their preferred pedaling strategy (Preferred Strategy, PS) and then, through the use of a feedback based on the presentation of a real-time index of mechanical efficiency determined by means of instrumented pedals, they were helped to optimize their pedaling technique (Effective Strategy, ES). EMG activity was recorded from 8 muscles of the dominant leg. Nonnegative Matrix Factorization was applied for the extraction of muscle synergies. 4 modules were sufficient to reconstruct the repertoire of muscle activations for all the subjects during PS condition, and these modules were found consistent across all the subjects (correlation > 83%). 5 muscle synergies were necessary for the characterization in ES condition; 4 out of these modules were shared with PS condition, and the resulting additional module appeared subject-specific. These preliminary results support the existence of a modular motor control in humans. © 2012 IEEE.

Muscle synergies are consistent when pedaling under different biomechanical demands

cristiano de marchis
Primo
;
2012-01-01

Abstract

In this study we investigate the muscle coordination underlying the execution of a pedaling exercise across different biomechanical demands, by using the muscle synergies paradigm. 9 non professional subjects performed a cycling exercise using their preferred pedaling strategy (Preferred Strategy, PS) and then, through the use of a feedback based on the presentation of a real-time index of mechanical efficiency determined by means of instrumented pedals, they were helped to optimize their pedaling technique (Effective Strategy, ES). EMG activity was recorded from 8 muscles of the dominant leg. Nonnegative Matrix Factorization was applied for the extraction of muscle synergies. 4 modules were sufficient to reconstruct the repertoire of muscle activations for all the subjects during PS condition, and these modules were found consistent across all the subjects (correlation > 83%). 5 muscle synergies were necessary for the characterization in ES condition; 4 out of these modules were shared with PS condition, and the resulting additional module appeared subject-specific. These preliminary results support the existence of a modular motor control in humans. © 2012 IEEE.
2012
978-1-4577-1787-1
978-1-4244-4119-8
978-1-4577-1787-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3239931
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact