Aim of all designers is to optimize the product principally in term of mass. The classic manufacturing processes constraint the designer to use a limited number of parameters for obtaining the best results. New manufacturing processes like Additive Manufacturing, open the way to a new optimization strategies, one of the most important is the topology optimization. The objective function is to reduce the mass keeping other functionalities of the product intact. The starting geometry of each topology optimization can be the geometry used for the classic manufacturing method or it can be the lattice structure or a geometry with a tessellation applied by means Voronoi technique. Aim of this paper is to investigate the potential of Voronoi tessellation in the field of structural engineering. A titanium plate with Voronoi tessellation is modelled varying the number of seeds and keeping the total mass unaltered. Thanks to a finite element simulation, for each condition a modal analysis has been performed and the natural frequencies have been extracted. The paper discusses about the influence of the number of seeds to the natural frequencies of plate. This could be a new way and a starting point for topology optimization oriented to the management of natural frequency domain exploiting the Voronoi parameters.
Voronoi Tessellation Application for Controlling Frequency Domain of a Titanium Plate
Cucinotta F.Methodology
;Raffaele M.Software
;Salmeri F.Investigation
;Sfravara F.
Writing – Review & Editing
2023-01-01
Abstract
Aim of all designers is to optimize the product principally in term of mass. The classic manufacturing processes constraint the designer to use a limited number of parameters for obtaining the best results. New manufacturing processes like Additive Manufacturing, open the way to a new optimization strategies, one of the most important is the topology optimization. The objective function is to reduce the mass keeping other functionalities of the product intact. The starting geometry of each topology optimization can be the geometry used for the classic manufacturing method or it can be the lattice structure or a geometry with a tessellation applied by means Voronoi technique. Aim of this paper is to investigate the potential of Voronoi tessellation in the field of structural engineering. A titanium plate with Voronoi tessellation is modelled varying the number of seeds and keeping the total mass unaltered. Thanks to a finite element simulation, for each condition a modal analysis has been performed and the natural frequencies have been extracted. The paper discusses about the influence of the number of seeds to the natural frequencies of plate. This could be a new way and a starting point for topology optimization oriented to the management of natural frequency domain exploiting the Voronoi parameters.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.