The nearing end of Moore's Law has been driving the development of domain-specific hardware tailored to solve a special set of problems. Along these lines, probabilistic computing with inherently stochastic building blocks (p-bits) have shown significant promise, particularly in the context of hard optimization and statistical sampling problems. p-bits have been proposed and demonstrated in different hardware substrates ranging from small-scale stochastic magnetic tunnel junctions (sMTJs) in asynchronous architectures to large-scale CMOS in synchronous architectures. Here, we design and implement a truly asynchronous and medium-scale p-computer (with approx f800 fp-fbits) that closely emulates the asynchronous dynamics of sMTJs in Field Programmable Gate Arrays (FP-GAs). Using hard instances of the planted Ising glass problem on the Chimera lattice, we evaluate the performance of the asynchronous architecture against an ideal, synchronous design that performs parallelized (chromatic) exact Gibbs sampling. We find that despite the lack of any careful synchronization, the asynchronous design achieves parallelism with comparable algorithmic scaling in the ideal, carefully tuned and parallelized synchronous design. Our results highlight the promise of massively scaled p-computers with millions of free-running p-bits made out of nanoscale building blocks such as stochastic magnetic tunnel junctions.

Physics-inspired Ising Computing with Ring Oscillator Activated p-bits

Grimaldi A.
Co-primo
Writing – Original Draft Preparation
;
Finocchio G.
Penultimo
Supervision
;
2022-01-01

Abstract

The nearing end of Moore's Law has been driving the development of domain-specific hardware tailored to solve a special set of problems. Along these lines, probabilistic computing with inherently stochastic building blocks (p-bits) have shown significant promise, particularly in the context of hard optimization and statistical sampling problems. p-bits have been proposed and demonstrated in different hardware substrates ranging from small-scale stochastic magnetic tunnel junctions (sMTJs) in asynchronous architectures to large-scale CMOS in synchronous architectures. Here, we design and implement a truly asynchronous and medium-scale p-computer (with approx f800 fp-fbits) that closely emulates the asynchronous dynamics of sMTJs in Field Programmable Gate Arrays (FP-GAs). Using hard instances of the planted Ising glass problem on the Chimera lattice, we evaluate the performance of the asynchronous architecture against an ideal, synchronous design that performs parallelized (chromatic) exact Gibbs sampling. We find that despite the lack of any careful synchronization, the asynchronous design achieves parallelism with comparable algorithmic scaling in the ideal, carefully tuned and parallelized synchronous design. Our results highlight the promise of massively scaled p-computers with millions of free-running p-bits made out of nanoscale building blocks such as stochastic magnetic tunnel junctions.
2022
978-1-6654-5225-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3257806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact