A multi-functional hybrid material based on natural clays for environmental bio-remediation and recover), is disclosed. In particular, the invention discloses the design and development of appropriately functionalized nanohybrid materials starting from nanostructured clays and the subsequent study of the absorbent properties in relation to hydrocarbons, heavy metals, chemical pollutants, oils, particulate, and microplastics. These nanomaterials were prepared in order to remove the hydrocarbon pollutants (for example oil) and metal pollutants in natural matrices (marine environment), with potential applications in the field of environmental remediation.

Multi-functional hybrid material based on natural clays for environmental recovery and bio-remediation

Maria Rosaria Plutino;Giuseppe Sabatino;Giulia Rando
2020-01-01

Abstract

A multi-functional hybrid material based on natural clays for environmental bio-remediation and recover), is disclosed. In particular, the invention discloses the design and development of appropriately functionalized nanohybrid materials starting from nanostructured clays and the subsequent study of the absorbent properties in relation to hydrocarbons, heavy metals, chemical pollutants, oils, particulate, and microplastics. These nanomaterials were prepared in order to remove the hydrocarbon pollutants (for example oil) and metal pollutants in natural matrices (marine environment), with potential applications in the field of environmental remediation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3258945
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact