Background: Following the launch of the global COVID-19 vaccination campaign, there have been increased reports of autoimmune diseases developing de novo following vaccination. These cases include rheumatoid arthritis, autoimmune hepatitis, immune thrombotic thrombocytopenia, and connective tissue diseases. Nevertheless, COVID-19 vaccines are considered safe for patients with autoimmune diseases and are strongly recommended. Objectives: The aim of this in silico analysis is to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most commonly administered COVID-19 vaccines, that could elicit an aberrant adap- tive immune response in predisposed individuals. Methods: The FASTA sequence of the protein encoded by the BNT-162b2 vaccine was retrieved from http://genome.ucsc.edu and used as a key input to the Immune Epitope Database and Analysis Resource (www.iedb.org). Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC ligand assays without MHC restriction were searched and evaluated. HLA-disease associations were screened on the HLA-SPREAD platform (https://hla- spread.igib.res.in) by selecting only positive markers. Results: A total of 183 epitopes were found, corresponding to 178 SARS-CoV-2 and 5 SARS-CoV spike epitopes, respectively. Results were obtained from 22 T-cell assays, 398 B-cell assays, and 2 MHC ligand assays. Complementary receptors included 1080 T-cell receptors and 0 B-cell receptors. Specifically, the IEDB_epitope:1329790 (NATNVVIKVCEFQFCNDPFLGVYY) was shown to bind to HLA-DRB1*15:02 and HLA-DRB1*15:03 alleles, whereas the IEDB_epitope:1392457 (TKCTLKSFTVEKGIYQTSNFRVQPT) was reported to bind to HLA-DRB1*07:01, HLA-DRB1*03:01, HLA-DRB3*01:01, and HLA- DRB4*01:01 alleles. The HLA alleles detected were found to be positively associated with various immunological disorders (Table 1).Conclusion: Similar to the SARS-CoV-2 spike protein, the protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals. Genotyping for HLA alleles may help identify at-risk individuals. However, further research is needed to elucidate the underlying mechanisms and potential clinical implications.

OP0084 POSSIBLE ROLE OF PEPTIDE EPITOPES OF COVID-19 BNT-162B2 MRNA VACCINE IN FOMENTING AUTOIMMUNITY: AN IN SILICO ANALYSIS

Talotta, R.
Primo
Writing – Review & Editing
2023-01-01

Abstract

Background: Following the launch of the global COVID-19 vaccination campaign, there have been increased reports of autoimmune diseases developing de novo following vaccination. These cases include rheumatoid arthritis, autoimmune hepatitis, immune thrombotic thrombocytopenia, and connective tissue diseases. Nevertheless, COVID-19 vaccines are considered safe for patients with autoimmune diseases and are strongly recommended. Objectives: The aim of this in silico analysis is to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most commonly administered COVID-19 vaccines, that could elicit an aberrant adap- tive immune response in predisposed individuals. Methods: The FASTA sequence of the protein encoded by the BNT-162b2 vaccine was retrieved from http://genome.ucsc.edu and used as a key input to the Immune Epitope Database and Analysis Resource (www.iedb.org). Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC ligand assays without MHC restriction were searched and evaluated. HLA-disease associations were screened on the HLA-SPREAD platform (https://hla- spread.igib.res.in) by selecting only positive markers. Results: A total of 183 epitopes were found, corresponding to 178 SARS-CoV-2 and 5 SARS-CoV spike epitopes, respectively. Results were obtained from 22 T-cell assays, 398 B-cell assays, and 2 MHC ligand assays. Complementary receptors included 1080 T-cell receptors and 0 B-cell receptors. Specifically, the IEDB_epitope:1329790 (NATNVVIKVCEFQFCNDPFLGVYY) was shown to bind to HLA-DRB1*15:02 and HLA-DRB1*15:03 alleles, whereas the IEDB_epitope:1392457 (TKCTLKSFTVEKGIYQTSNFRVQPT) was reported to bind to HLA-DRB1*07:01, HLA-DRB1*03:01, HLA-DRB3*01:01, and HLA- DRB4*01:01 alleles. The HLA alleles detected were found to be positively associated with various immunological disorders (Table 1).Conclusion: Similar to the SARS-CoV-2 spike protein, the protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals. Genotyping for HLA alleles may help identify at-risk individuals. However, further research is needed to elucidate the underlying mechanisms and potential clinical implications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3263849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact