Using an analogue of Serre’s open image theorem for elliptic curves with complex multiplication, one can associate to each CM elliptic curve E defnied over a number feild F a natural number I(E/F) which describes how big the image of the Galois representation associated to E is. We show how one can compute I(E/F), using a closed formula that we obtain from the classical theory of complex multiplication.

How big is the image of the Galois representations attached to CM elliptic curves?

Pengo, Riccardo
2022-01-01

Abstract

Using an analogue of Serre’s open image theorem for elliptic curves with complex multiplication, one can associate to each CM elliptic curve E defnied over a number feild F a natural number I(E/F) which describes how big the image of the Galois representation associated to E is. We show how one can compute I(E/F), using a closed formula that we obtain from the classical theory of complex multiplication.
2022
978-1-4704-6794-4
978-1-4704-7089-0
File in questo prodotto:
File Dimensione Formato  
[Campagna_Pengo]-How_big_is_the_image_of_the_Galois_representations_attached_to_CM_elliptic.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 289.67 kB
Formato Adobe PDF
289.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3313929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact