Given an elliptic curve $E$ defined over $\mathbb{Q}$ which has potential complex multiplication by the ring of integers $\mathcal{O}_K$ of an imaginary quadratic field $K$ we construct a polynomial $P_E \in \mathbb{Z}[x,y]$ which is a planar model of $E$ and such that the Mahler measure $m(P_E) \in \mathbb{R}$ is related to the special value of the $L$-function $L(E,s)$ at $s = 2$.

Mahler's measure and elliptic curves with potential complex multiplication

Riccardo Pengo
2020-01-01

Abstract

Given an elliptic curve $E$ defined over $\mathbb{Q}$ which has potential complex multiplication by the ring of integers $\mathcal{O}_K$ of an imaginary quadratic field $K$ we construct a polynomial $P_E \in \mathbb{Z}[x,y]$ which is a planar model of $E$ and such that the Mahler measure $m(P_E) \in \mathbb{R}$ is related to the special value of the $L$-function $L(E,s)$ at $s = 2$.
2020
File in questo prodotto:
File Dimensione Formato  
[Pengo]-Mahler_s_measure_and_elliptic_curves_with_potential_complex_multiplication2.pdf

accesso aperto

Licenza: Creative commons
Dimensione 918.03 kB
Formato Adobe PDF
918.03 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3313969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact