This study investigates the spatial and political contagion dynamics influencing candidate polls for US swing states during the 2020 presidential election. By suggesting a Markov Switching Spatial-Temporal AutoRegressive model (MSSTAR), we achieve evidence of significant interdependence and regime-specific impact of spatial components, particularly in states with uncertain electoral outcomes. The model highlights the role of neighboring states during periods of greater political uncertainty.

Spatial Dependence in the Dynamics of the 2020 Presidential Election Polls Trackers

Demetrio Lacava
;
Edoardo Otranto
2025-01-01

Abstract

This study investigates the spatial and political contagion dynamics influencing candidate polls for US swing states during the 2020 presidential election. By suggesting a Markov Switching Spatial-Temporal AutoRegressive model (MSSTAR), we achieve evidence of significant interdependence and regime-specific impact of spatial components, particularly in states with uncertain electoral outcomes. The model highlights the role of neighboring states during periods of greater political uncertainty.
2025
9791280655523
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3334531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact