The paper presents an adaptive system for Voiced/Unvoiced (V/UV) speech detection in the presence of background noise. Genetic algorithms were used to select the features that offer the best V/UV detection according to the output of a background Noise Classifier (NC) and a Signal-to-Noise Ratio Estimation (SNRE) system. The system was implemented, and the tests performed using the TIMIT speech corpus and its phonetic classification. The results were compared with a nonadaptive classification system and the V/UV detectors adopted by two important speech coding standards: the V/UV detection system in the ETSI ES 202 212 v1.1.2 and the speech classification in the Selectable Mode Vocoder (SMV) algorithm. In all cases the proposed adaptive V/UV classifier outperforms the traditional solutions giving an improvement of 25% in very noisy environments.
Adaptive V/UV speech detection based on characterization of background noise
SERRANO, Salvatore
2009-01-01
Abstract
The paper presents an adaptive system for Voiced/Unvoiced (V/UV) speech detection in the presence of background noise. Genetic algorithms were used to select the features that offer the best V/UV detection according to the output of a background Noise Classifier (NC) and a Signal-to-Noise Ratio Estimation (SNRE) system. The system was implemented, and the tests performed using the TIMIT speech corpus and its phonetic classification. The results were compared with a nonadaptive classification system and the V/UV detectors adopted by two important speech coding standards: the V/UV detection system in the ETSI ES 202 212 v1.1.2 and the speech classification in the Selectable Mode Vocoder (SMV) algorithm. In all cases the proposed adaptive V/UV classifier outperforms the traditional solutions giving an improvement of 25% in very noisy environments.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.