Pretreatment with capsaicin caused a depletion of substance P (SP)-, neurokinin A (NKA)- and calcitonin gene-related peptide (CGRP)-like immunoreactivity (-LI) from the trigeminal ganglion, dura mater and cerebral arteries. The effect of capsaicin on isolated basilar arteries of guinea pig resulted in a biphasic relaxant response of histamine precontracted vessels. The first phase of the capsaicin-induced relaxation was absent in capsaicin-treated guinea pigs. Furthermore, repeated administration of capsaicin decreased the first but not the second phase of relaxation, supporting the view that a stored agent was released, while the second phase probably was due to a direct effect of capsaicin per se. The biphasic effect was not modified by the SP antagonist Spantide in a concentration that blocks tachykinin response (3.10(-6) M), nor by removal of the endothelium. There was no significant difference in pD2 values (-log concentration eliciting half maximum relaxation) between relaxations induced by SP, NKA, neurokinin B, neuropeptide K or CGRP in capsaicin pretreated as compared to vehicle-treated animals. These results are in support of the assumption that CGRP is involved in the capsaicin-induced relaxation caused by release of vasoactive agents from sensory afferent nerves.
Titolo: | Evidence that calcitonin gene-related peptide contributes to the capsaicin-induced relaxation of guinea pig cerebral arteries. |
Autori: | |
Data di pubblicazione: | 1990 |
Rivista: | |
Abstract: | Pretreatment with capsaicin caused a depletion of substance P (SP)-, neurokinin A (NKA)- and calcitonin gene-related peptide (CGRP)-like immunoreactivity (-LI) from the trigeminal ganglion, dura mater and cerebral arteries. The effect of capsaicin on isolated basilar arteries of guinea pig resulted in a biphasic relaxant response of histamine precontracted vessels. The first phase of the capsaicin-induced relaxation was absent in capsaicin-treated guinea pigs. Furthermore, repeated administration of capsaicin decreased the first but not the second phase of relaxation, supporting the view that a stored agent was released, while the second phase probably was due to a direct effect of capsaicin per se. The biphasic effect was not modified by the SP antagonist Spantide in a concentration that blocks tachykinin response (3.10(-6) M), nor by removal of the endothelium. There was no significant difference in pD2 values (-log concentration eliciting half maximum relaxation) between relaxations induced by SP, NKA, neurokinin B, neuropeptide K or CGRP in capsaicin pretreated as compared to vehicle-treated animals. These results are in support of the assumption that CGRP is involved in the capsaicin-induced relaxation caused by release of vasoactive agents from sensory afferent nerves. |
Handle: | http://hdl.handle.net/11570/11738 |
Appare nelle tipologie: | 14.a.1 Articolo su rivista |