In this work we analyze and compare the model of the material (elastic) element and the entropy form developed by Coleman and Owen with that one obtained by localizing the balance equations of the continuum thermodynamics. This comparison allows one to determine the relation between the entropy function S of Coleman–Owen and that one imported from the continuum thermodynamics. We introduce the Extended Thermodynamical Phase Space (ETPS) P and realize the energy and entropy balance expressions as 1-forms in this space. This allows us to realizes I and II laws of thermodynamics as conditions on these forms. We study the integrability (closure) conditions of the entropy form for the model of thermoelastic element and for the deformable ferroelectric crystal element. In both cases closure conditions are used to rewrite the dynamical system of the model in term of the entropy form potential and to determine the constitutive relations among the dynamical variables of the model. In a related study (to be published) these results will be used for the formulation of the dynamical model of a material element in the contact thermodynamical phase space of Caratheodory and Hermann similar to that of homogeneous thermodynamics.

Material element model and the geometry of the entropy form

DOLFIN, Marina;RESTUCCIA, Liliana
2010

Abstract

In this work we analyze and compare the model of the material (elastic) element and the entropy form developed by Coleman and Owen with that one obtained by localizing the balance equations of the continuum thermodynamics. This comparison allows one to determine the relation between the entropy function S of Coleman–Owen and that one imported from the continuum thermodynamics. We introduce the Extended Thermodynamical Phase Space (ETPS) P and realize the energy and entropy balance expressions as 1-forms in this space. This allows us to realizes I and II laws of thermodynamics as conditions on these forms. We study the integrability (closure) conditions of the entropy form for the model of thermoelastic element and for the deformable ferroelectric crystal element. In both cases closure conditions are used to rewrite the dynamical system of the model in term of the entropy form potential and to determine the constitutive relations among the dynamical variables of the model. In a related study (to be published) these results will be used for the formulation of the dynamical model of a material element in the contact thermodynamical phase space of Caratheodory and Hermann similar to that of homogeneous thermodynamics.
File in questo prodotto:
File Dimensione Formato  
lavoro IJGMMP.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 286.01 kB
Formato Adobe PDF
286.01 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11570/1193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact