We investigate the behavior of several noisy nonlinear dynamical models in order to find out whether the presence of a common noise term may synchronize identical chaotic systems as recently supposed [S. Fahy and D. R. Hamann, Phys. Rev. Lett. 69, 761 (1993); A. Maritan and J. R. Banavar, ibid. 72, 1451 (1994)]. The results of the present study show that noise can speed up orbit convergence in a restricted context, but in general cannot drive, by itself, a transition from chaotic to nonchaotic behavior.
Titolo: | Noise and synchronization in chaotic systems |
Autori: | |
Data di pubblicazione: | 1996 |
Rivista: | |
Abstract: | We investigate the behavior of several noisy nonlinear dynamical models in order to find out whether the presence of a common noise term may synchronize identical chaotic systems as recently supposed [S. Fahy and D. R. Hamann, Phys. Rev. Lett. 69, 761 (1993); A. Maritan and J. R. Banavar, ibid. 72, 1451 (1994)]. The results of the present study show that noise can speed up orbit convergence in a restricted context, but in general cannot drive, by itself, a transition from chaotic to nonchaotic behavior. |
Handle: | http://hdl.handle.net/11570/13784 |
Appare nelle tipologie: | 14.a.1 Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.