Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the kernel of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called 3-kernel. A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e. the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article Costantini (2004b).

### Technical note: Normal Forms for Answer Set Programming

#### Abstract

Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the kernel of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called 3-kernel. A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e. the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article Costantini (2004b).
##### Scheda breve Scheda completa Scheda completa (DC)
2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
##### Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11570/1434990`
##### Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

• ND
• 16
• 5