Liouville’s classical theorem assures that every harmonic function on the whole space$ R^n$ that is moreover bounded from below is a constant. It is easy to observe that, generally, the same result does not hold if we replace the whole space $R^n$ with an exterior domain. Hence, in this paper we provide a Liouville-type theorem for harmonic functions defined on exterior domains.
Titolo: | A Liouville-type theorem for harmonic functions on exterior domains |
Autori: | |
Data di pubblicazione: | 2000 |
Rivista: | |
Abstract: | Liouville’s classical theorem assures that every harmonic function on the whole space$ R^n$ that is moreover bounded from below is a constant. It is easy to observe that, generally, the same result does not hold if we replace the whole space $R^n$ with an exterior domain. Hence, in this paper we provide a Liouville-type theorem for harmonic functions defined on exterior domains. |
Handle: | http://hdl.handle.net/11570/1582891 |
Appare nelle tipologie: | 14.a.1 Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.