Liouville’s classical theorem assures that every harmonic function on the whole space$ R^n$ that is moreover bounded from below is a constant. It is easy to observe that, generally, the same result does not hold if we replace the whole space $R^n$ with an exterior domain. Hence, in this paper we provide a Liouville-type theorem for harmonic functions defined on exterior domains.

A Liouville-type theorem for harmonic functions on exterior domains

CAMMAROTO, Filippo;CHINNI', Antonia
2000-01-01

Abstract

Liouville’s classical theorem assures that every harmonic function on the whole space$ R^n$ that is moreover bounded from below is a constant. It is easy to observe that, generally, the same result does not hold if we replace the whole space $R^n$ with an exterior domain. Hence, in this paper we provide a Liouville-type theorem for harmonic functions defined on exterior domains.
2000
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1582891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact