In this note, we prove a well-posedness result for a class of linear difference equations in the space of all real sequences {Vr}reNu{0} satisfying SUPrENU{0} r! IVrl < -bCX~. Such result is obtained as an application of a recent result on the well posedness of the Cauchy problem for ordinary differential equations in the space of all functions u C C°°(R, E) (where E is a Banach space) whose derivatives are equibounded on each bounded subset of R.

A well-posedness result for a class of linear difference equations

CHINNI', Antonia;CUBIOTTI, Paolo
2000-01-01

Abstract

In this note, we prove a well-posedness result for a class of linear difference equations in the space of all real sequences {Vr}reNu{0} satisfying SUPrENU{0} r! IVrl < -bCX~. Such result is obtained as an application of a recent result on the well posedness of the Cauchy problem for ordinary differential equations in the space of all functions u C C°°(R, E) (where E is a Banach space) whose derivatives are equibounded on each bounded subset of R.
2000
File in questo prodotto:
File Dimensione Formato  
estratto lavoro sulle equazioni alle differenze.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 216.3 kB
Formato Adobe PDF
216.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1582892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact