We derive the multiparticle-correlation expansion of the excess entropy of classical particles in the canonical ensemble using a new approach that elucidates the rationale behind each term in the expansion. This formula provides the theoretical framework for an entropy-based ordering criterion that has already been tested for a variety of model fluids and thermodynamic phenomena. In view of future investigations of the phase diagram of colloidal mixtures, we detail in this paper the case of a two-component system of spherical and rod-like particles and discuss the symmetries underlying both the self and distinct pair-distribution functions under various geometrical constraints.
The entropy multiparticle-correlation expansion for a mixture of spherical and elongated particles
PRESTIPINO GIARRITTA, Santi;GIAQUINTA, Paolo Vittorio
2004-01-01
Abstract
We derive the multiparticle-correlation expansion of the excess entropy of classical particles in the canonical ensemble using a new approach that elucidates the rationale behind each term in the expansion. This formula provides the theoretical framework for an entropy-based ordering criterion that has already been tested for a variety of model fluids and thermodynamic phenomena. In view of future investigations of the phase diagram of colloidal mixtures, we detail in this paper the case of a two-component system of spherical and rod-like particles and discuss the symmetries underlying both the self and distinct pair-distribution functions under various geometrical constraints.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.