Antipsychotic drugs are used for the treatment of schizophrenia and other related psychotic disorders. The antipsychotics currently available include older or classical compounds and newer or atypical agents. Most antipsychotic drugs are highly lipophilic compounds and undergo extensive metabolism by cytochrome P450 (CYP) enzymes in order to be excreted. There is a wide interindividual variability in the biotransformation of antipsychotic drugs, resulting in pronounced differences in steady-state plasma concentrations and, possibly, in therapeutic and toxic effects, during treatment with fixed doses. Many classical and some newer antipsychotics are metabolized to a significant extent by the polymorphic CYP2D6, which shows large interindividual variation in activity. Other CYPs, especially CYP1A2 and CYP3A4, also contribute to the interindividual variability in the kinetics of antipsychotics and occurrence of drug interactions. No relationship between CYP2D6 genotype or activity and therapeutic effects of classical antipsychotic drugs has been found in the few studies performed. On the other hand, some investigations suggest that poor metabolizers (PMs) of CYP2D6 would be more prone to oversedation and, possibly, Parkinsonism during treatment with classical antipsychotics, while other studies, mostly retrospective, have been negative or inconclusive. For the newer antipsychotics, such data are lacking. To date, CYP2D6 phenotyping and genotyping appear, therefore, to be clinically useful for dose predicting only in special cases and for a limited number of antipsychotics, while their usefulness in predicting clinical effects must be further explored.

Cytochrome P450 polymorphisms and response to antipsychotic therapy

SPINA, Edoardo
2002-01-01

Abstract

Antipsychotic drugs are used for the treatment of schizophrenia and other related psychotic disorders. The antipsychotics currently available include older or classical compounds and newer or atypical agents. Most antipsychotic drugs are highly lipophilic compounds and undergo extensive metabolism by cytochrome P450 (CYP) enzymes in order to be excreted. There is a wide interindividual variability in the biotransformation of antipsychotic drugs, resulting in pronounced differences in steady-state plasma concentrations and, possibly, in therapeutic and toxic effects, during treatment with fixed doses. Many classical and some newer antipsychotics are metabolized to a significant extent by the polymorphic CYP2D6, which shows large interindividual variation in activity. Other CYPs, especially CYP1A2 and CYP3A4, also contribute to the interindividual variability in the kinetics of antipsychotics and occurrence of drug interactions. No relationship between CYP2D6 genotype or activity and therapeutic effects of classical antipsychotic drugs has been found in the few studies performed. On the other hand, some investigations suggest that poor metabolizers (PMs) of CYP2D6 would be more prone to oversedation and, possibly, Parkinsonism during treatment with classical antipsychotics, while other studies, mostly retrospective, have been negative or inconclusive. For the newer antipsychotics, such data are lacking. To date, CYP2D6 phenotyping and genotyping appear, therefore, to be clinically useful for dose predicting only in special cases and for a limited number of antipsychotics, while their usefulness in predicting clinical effects must be further explored.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1601379
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 47
social impact