Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate, the methyl donor for remethylation of homocysteine to methionine. The C677T MTHFR polymorphism is associated with mild hyperhomocysteinemia, but only in the presence of low folate status. Because MTHFR contains flavin adenine dinucleotide (FAD) as a prosthetic group, riboflavin status may also influence homocysteine metabolism. The objective of this study was to examine the association between riboflavin status and fasting plasma total homocysteine (tHcy) concentration while also considering MTHFR C677T genotype and folate status. The study was conducted using fasting plasma samples (n 450) from the fifth examination of the Framingham Offspring Study cohort. All persons with the TT genotype and age- and sex-matched sets of individuals with the CT and CC genotypes were selected for determination of plasma riboflavin and flavin mono- and dinucleotide levels. Plasma riboflavin was associated with tHcy concentrations, but the association was largely confined to persons with plasma folate 12.5 nmol/L and TT genotype. In these persons, the mean tHcy among individuals with riboflavin levels 6.89 nmol/L was 14.5 mol/L, whereas the mean tHcy for those with riboflavin 11 nmol/L was 11.6 mol/L (P-trend 0.03). Plasma flavin nucleotides were unrelated to tHcy concentrations. Our data suggest that riboflavin status may affect homocysteine metabolism, but only in a small segment of the population who have both low folate status and are homozygotes for the MTHFR C677T mutation.

The Relationship between Riboflavin and Plasma Total Homocysteine in the Framingham Offspring Cohort Is Influenced by Folate Status and the C677T Transition in the Methylenetetrahydrofolate Reductase Gene

RUSSO, GIUSEPPINA;
2002-01-01

Abstract

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate, the methyl donor for remethylation of homocysteine to methionine. The C677T MTHFR polymorphism is associated with mild hyperhomocysteinemia, but only in the presence of low folate status. Because MTHFR contains flavin adenine dinucleotide (FAD) as a prosthetic group, riboflavin status may also influence homocysteine metabolism. The objective of this study was to examine the association between riboflavin status and fasting plasma total homocysteine (tHcy) concentration while also considering MTHFR C677T genotype and folate status. The study was conducted using fasting plasma samples (n 450) from the fifth examination of the Framingham Offspring Study cohort. All persons with the TT genotype and age- and sex-matched sets of individuals with the CT and CC genotypes were selected for determination of plasma riboflavin and flavin mono- and dinucleotide levels. Plasma riboflavin was associated with tHcy concentrations, but the association was largely confined to persons with plasma folate 12.5 nmol/L and TT genotype. In these persons, the mean tHcy among individuals with riboflavin levels 6.89 nmol/L was 14.5 mol/L, whereas the mean tHcy for those with riboflavin 11 nmol/L was 11.6 mol/L (P-trend 0.03). Plasma flavin nucleotides were unrelated to tHcy concentrations. Our data suggest that riboflavin status may affect homocysteine metabolism, but only in a small segment of the population who have both low folate status and are homozygotes for the MTHFR C677T mutation.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1608512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 108
social impact