2,3-Benzodiazepine derivatives are drug candidates synthesized for potential treatment of various neurodegenerative diseases involving the excessive activity of AMPA receptors. Here we describe a rapid kinetic investigation of the mechanism of inhibition of the GluR2Qflip AMPA receptor channel opening by two 2,3-benzodiazepine derivatives that are structurally similar (BDZ-2 and BDZ-3). Using a laserpulse photolysis technique with a time resolution of 60 s, we measured the effects of these inhibitors on both the channel opening rate and the whole-cell current amplitude. We found that both compounds preferably inhibit the open-channel state, although BDZ-2 is a more potent inhibitor in that it inhibits the open-channel state 5-fold stronger than BDZ-3 does. Both compounds bind to the same noncompetitive site. Binding of an inhibitor to the receptor involves the formation of a loose, partially conducting channel intermediate, which rapidly isomerizes to a tighter complex. The isomerization reaction is identified as the main step at which the receptor distinguishes the structural difference between the two compounds. These results suggest that addition of a bulky group at the N-3 position on the diazepine ring, as in BDZ-3, does not alter the mechanism of action, or the site of binding, but does lower the inhibitory potency, possibly due to an unfavorable interaction of a bulky group at the N-3 position with the receptor site. The new mechanistic revelation about the structure-reactivity relationship is useful in designing conformation-specific, more potent noncompetitive inhibitors for the GluR2 AMPA receptor.

Mechanism of Inhibition of the GluR2 AMPA Receptor Channel Opening by 2,3-Benzodiazepine Derivatives

MICALE, Nicola;GRASSO, Silvana;
2008-01-01

Abstract

2,3-Benzodiazepine derivatives are drug candidates synthesized for potential treatment of various neurodegenerative diseases involving the excessive activity of AMPA receptors. Here we describe a rapid kinetic investigation of the mechanism of inhibition of the GluR2Qflip AMPA receptor channel opening by two 2,3-benzodiazepine derivatives that are structurally similar (BDZ-2 and BDZ-3). Using a laserpulse photolysis technique with a time resolution of 60 s, we measured the effects of these inhibitors on both the channel opening rate and the whole-cell current amplitude. We found that both compounds preferably inhibit the open-channel state, although BDZ-2 is a more potent inhibitor in that it inhibits the open-channel state 5-fold stronger than BDZ-3 does. Both compounds bind to the same noncompetitive site. Binding of an inhibitor to the receptor involves the formation of a loose, partially conducting channel intermediate, which rapidly isomerizes to a tighter complex. The isomerization reaction is identified as the main step at which the receptor distinguishes the structural difference between the two compounds. These results suggest that addition of a bulky group at the N-3 position on the diazepine ring, as in BDZ-3, does not alter the mechanism of action, or the site of binding, but does lower the inhibitory potency, possibly due to an unfavorable interaction of a bulky group at the N-3 position with the receptor site. The new mechanistic revelation about the structure-reactivity relationship is useful in designing conformation-specific, more potent noncompetitive inhibitors for the GluR2 AMPA receptor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1670595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact