Xylem recovery from embolism was studied in stems of Laurus nobilis L. that were induced to cavitate by combining negative xylem pressures with positive air pressures applied with a pressure collar. Xylem refillingwas measured 2 and 20 min and 15 h after air pressure release in January, March and June when increasing percentages of wood parenchyma cells with high starch content (HSC-VAC) were counted (from 0% in January to 87.3% in June). In January, no xylem repair was measured. In June, stems refilled by 75% of previous conductivity loss with a parallel decrease of HSC-VAC. Xylem refilling was tested for stems with phloem either intact or excised by 20 and 50% and with phloem inactivated by girdling stems at both sides of the embolised segment. Stems with 50% of the cortex removed showed some recovery 15 h after embolism. Girdled stems did not recover from embolism and no starch depolymerisation was measured. Girdled stems where a radial mechanical pressure was applied for 20 min after embolism refilled in the same way as stems with intact phloem. Our conclusion is that phloem may export some signal for starch depolymerisation and this, in turn, would drive sugar efflux into embolised conduits with consequent osmotic water flows and refilling.

Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel)

TRIFILO', Patrizia;LO GULLO, Maria Assunta
2006-01-01

Abstract

Xylem recovery from embolism was studied in stems of Laurus nobilis L. that were induced to cavitate by combining negative xylem pressures with positive air pressures applied with a pressure collar. Xylem refillingwas measured 2 and 20 min and 15 h after air pressure release in January, March and June when increasing percentages of wood parenchyma cells with high starch content (HSC-VAC) were counted (from 0% in January to 87.3% in June). In January, no xylem repair was measured. In June, stems refilled by 75% of previous conductivity loss with a parallel decrease of HSC-VAC. Xylem refilling was tested for stems with phloem either intact or excised by 20 and 50% and with phloem inactivated by girdling stems at both sides of the embolised segment. Stems with 50% of the cortex removed showed some recovery 15 h after embolism. Girdled stems did not recover from embolism and no starch depolymerisation was measured. Girdled stems where a radial mechanical pressure was applied for 20 min after embolism refilled in the same way as stems with intact phloem. Our conclusion is that phloem may export some signal for starch depolymerisation and this, in turn, would drive sugar efflux into embolised conduits with consequent osmotic water flows and refilling.
2006
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1683041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 70
social impact