Let $I:=[0,1]$, $f:I imes[0,sigma] o R$, $g:I imes I o[0,+infty[$ and $h:I imes]0,+infty[ o R$. In this note we prove an existence result for solutions $uin L^s(I)$ of the integral equation $$h(t,u(t))=fBig(t,int_Ig(t,z),u(z),dzBig)quadhbox{for a.a.}quad tin I$$ where, in particular, the continuity of $f$ with respect to the second variable is not assumed. Our result is a partial extension of a previous result of the same authors [1], where the function $h$ was not allowed to depend explicitly on $t$.

A note on non-autonomous implicit integral equations with discontinuous right-hand side

ANELLO, Giovanni;CUBIOTTI, Paolo
2007-01-01

Abstract

Let $I:=[0,1]$, $f:I imes[0,sigma] o R$, $g:I imes I o[0,+infty[$ and $h:I imes]0,+infty[ o R$. In this note we prove an existence result for solutions $uin L^s(I)$ of the integral equation $$h(t,u(t))=fBig(t,int_Ig(t,z),u(z),dzBig)quadhbox{for a.a.}quad tin I$$ where, in particular, the continuity of $f$ with respect to the second variable is not assumed. Our result is a partial extension of a previous result of the same authors [1], where the function $h$ was not allowed to depend explicitly on $t$.
2007
File in questo prodotto:
File Dimensione Formato  
JIEA_2007.pdf

solo gestori archivio

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 153.54 kB
Formato Adobe PDF
153.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1683829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact