The sequestering capacity of synthetic and naturally occurring polycarboxylate ligands towards mono- methylmercury(II) was evaluated by stability quantitative data on the interaction of CH3Hgþ with different molecular weight synthetic polyacrylates (2 and 20 kDa average M.wt) and alginate (70– 100 kDa) extracted from brown algae Macrocystis pyrifera. The influence of ionic medium was evaluated by measurements on the CH3Hgþ-polyacrylate systems in NaNO3 medium at different ionic strengths (0.10, 0.25, 0.50 and 0.75mol Lÿ1), and a Debye–Hu¨ ckel type equation was used for the dependence of complex formation constants on ionic strength. Measurements on the CH3Hgþ - alginate system were carried out at I ¼0.10mol Lÿ1 in NaNO3 medium. By using the stability data, the sequestering capacity of both ligands towards monomethylmercury(II) was determined at different pH values. Results obtained show that the binding ability of polyacrylic ligands (PAA) is stronger than the alginate (AA), following the trend PAA (20 kDa)4PAA (2 kDa)4AA.

Sequestration of organomettalic compounds by synthetic and naturally occuring polycarboxylate ligands. Binding of monomethylmercury(II) by polyacrylic and alginic acids.

DE STEFANO, Concetta;SAMMARTANO, Silvio;
2007-01-01

Abstract

The sequestering capacity of synthetic and naturally occurring polycarboxylate ligands towards mono- methylmercury(II) was evaluated by stability quantitative data on the interaction of CH3Hgþ with different molecular weight synthetic polyacrylates (2 and 20 kDa average M.wt) and alginate (70– 100 kDa) extracted from brown algae Macrocystis pyrifera. The influence of ionic medium was evaluated by measurements on the CH3Hgþ-polyacrylate systems in NaNO3 medium at different ionic strengths (0.10, 0.25, 0.50 and 0.75mol Lÿ1), and a Debye–Hu¨ ckel type equation was used for the dependence of complex formation constants on ionic strength. Measurements on the CH3Hgþ - alginate system were carried out at I ¼0.10mol Lÿ1 in NaNO3 medium. By using the stability data, the sequestering capacity of both ligands towards monomethylmercury(II) was determined at different pH values. Results obtained show that the binding ability of polyacrylic ligands (PAA) is stronger than the alginate (AA), following the trend PAA (20 kDa)4PAA (2 kDa)4AA.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1684202
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact