We prove for a standard graded K-algebra A = R/I, where K is a field, R the polynomial ring K[x_1, . . . , x_n], that, if I has a universal degree reverse lexicographic Groebner basis of degree 2, then A is a strongly Koszul algebra. If A is a homogeneous semigroup ring, the same result is obtained by using the Graver bases theory.
On certain classes of degree reverse lexicographic Groebner bases
RESTUCCIA, Gaetana;RINALDO, GIANCARLO
2007-01-01
Abstract
We prove for a standard graded K-algebra A = R/I, where K is a field, R the polynomial ring K[x_1, . . . , x_n], that, if I has a universal degree reverse lexicographic Groebner basis of degree 2, then A is a strongly Koszul algebra. If A is a homogeneous semigroup ring, the same result is obtained by using the Graver bases theory.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.