Let (A, m) be a characteristic zero Noetherian local ring containing a DVR l with parameter the positive prime p. We find an upper bound for the rank of the finite module of differentials D_l(A) over A. In particular, we prove that \mu(D_I(A)) <= Dim (A)+ tr. deg. (A/M: I /pI) under the hypotheses that p is 0-divisor belonging to m^2, pA is an ideal associated to (0) and the system of parameters of A satisfies suitable conditions.
MODULE OF DIFFERENTIALS OF QUASI-KÄHLERIAN ALGEBRAS IN UNEQUAL CHARACTERISTIC
IMBESI, Maurizio
2002-01-01
Abstract
Let (A, m) be a characteristic zero Noetherian local ring containing a DVR l with parameter the positive prime p. We find an upper bound for the rank of the finite module of differentials D_l(A) over A. In particular, we prove that \mu(D_I(A)) <= Dim (A)+ tr. deg. (A/M: I /pI) under the hypotheses that p is 0-divisor belonging to m^2, pA is an ideal associated to (0) and the system of parameters of A satisfies suitable conditions.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.