A small ultraviolet-visible absorption spectrometer which uses fibre optic coupled immersion probes has been incorporated into a laboratory scale reaction calorimeter. The combined instrument has been tried out using the hydrolysis of acetic anhydride as a test reaction. With the calorimeter operating in the isoperibolic mode good agreement is found for the pseudo-first order reaction rate constant as determined from spectroscopic and calorimetric measurements. Experiments have been made in order to follow the reaction indirectly using optical pH measurements with acid-base indicators. The possibility of determining the temperature dependence of the rate constant in a single experiment has also been investigated.
The integration of an ultraviolet-visible spectrometer and a reaction calorimeter
AMPELLI, Claudio;LISTER, David George;MASCHIO, Giuseppe;
2003-01-01
Abstract
A small ultraviolet-visible absorption spectrometer which uses fibre optic coupled immersion probes has been incorporated into a laboratory scale reaction calorimeter. The combined instrument has been tried out using the hydrolysis of acetic anhydride as a test reaction. With the calorimeter operating in the isoperibolic mode good agreement is found for the pseudo-first order reaction rate constant as determined from spectroscopic and calorimetric measurements. Experiments have been made in order to follow the reaction indirectly using optical pH measurements with acid-base indicators. The possibility of determining the temperature dependence of the rate constant in a single experiment has also been investigated.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.