In some previous papers one of us (G.A.K.) discussed dielectric relaxation phenomena with the aid of non-equilibrium thermodynamics. In particular the Debye equation for dielectric relaxation in polar liquids was derived. It was also noted that generalizations of the Debye equation may be derived if one assumes that several microscopic phenomena occur which give rise to dielectric relaxation and that the contributions of these microscopic phenomena to the macroscopic polarization may be introduced as vectorial internal degrees of freedom in the entropy. If it is assumed that there are n vectorial internal degrees of freedom an explicit form for the relaxation equation may be derived, provided the developed formalism rnay be linearized. This relaxation equation has the form of a linear relation among the electric field E, the fìrst n derivatives with respect to time of this field, the polarization vector P and the first n + 1 derivatives with respect to time of P. It is the purpose of the present paper to give full details of the derivations of the above mentioned results. It is also shown in this paper that if a part of the total polarization P is reversible (i. e. if this part does not contribute to the entropy production) the coefficient of the time derivative of order n + 1 of P in the relaxation equation is zero.

On generalizations of the Debye equation for dielectric relaxation

RESTUCCIA, Liliana;
1988-01-01

Abstract

In some previous papers one of us (G.A.K.) discussed dielectric relaxation phenomena with the aid of non-equilibrium thermodynamics. In particular the Debye equation for dielectric relaxation in polar liquids was derived. It was also noted that generalizations of the Debye equation may be derived if one assumes that several microscopic phenomena occur which give rise to dielectric relaxation and that the contributions of these microscopic phenomena to the macroscopic polarization may be introduced as vectorial internal degrees of freedom in the entropy. If it is assumed that there are n vectorial internal degrees of freedom an explicit form for the relaxation equation may be derived, provided the developed formalism rnay be linearized. This relaxation equation has the form of a linear relation among the electric field E, the fìrst n derivatives with respect to time of this field, the polarization vector P and the first n + 1 derivatives with respect to time of P. It is the purpose of the present paper to give full details of the derivations of the above mentioned results. It is also shown in this paper that if a part of the total polarization P is reversible (i. e. if this part does not contribute to the entropy production) the coefficient of the time derivative of order n + 1 of P in the relaxation equation is zero.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1732539
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact