By pulsed field gradient nuclear magnetic resonance measurements, we investigated the translational diffusion of water confined in the 200 Å diameter pores of a sol−gel silica glass. The experiments, performed as a function of the hydration level, showed an enhancement of the self-diffusion coefficient when the water content corresponds to one or fewer monolayers. An explanation for this occurrence has been given in terms of a two-phase process involving a fast molecular exchange between the liquid and the vapor phase. Moreover, in partially filled pores, the surface water diffusion coefficient was measured, and was 4 times lower than the diffusion of liquid confined water in saturated spaces.

Water diffusion in nanoporous glass: An NMR study at different hydration levels

MAJOLINO, Domenico;CORSARO, CARMELO;CRUPI, Vincenza;VENUTI, Valentina;WANDERLINGH, Ulderico
2008-01-01

Abstract

By pulsed field gradient nuclear magnetic resonance measurements, we investigated the translational diffusion of water confined in the 200 Å diameter pores of a sol−gel silica glass. The experiments, performed as a function of the hydration level, showed an enhancement of the self-diffusion coefficient when the water content corresponds to one or fewer monolayers. An explanation for this occurrence has been given in terms of a two-phase process involving a fast molecular exchange between the liquid and the vapor phase. Moreover, in partially filled pores, the surface water diffusion coefficient was measured, and was 4 times lower than the diffusion of liquid confined water in saturated spaces.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1755699
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact