Let $X$ be a reflexive and smooth Banach space which has a weakly sequentially continuous duality mapping. We consider in this paper the iteration scheme $x_{n+1}=lambda_{n+1}y+(1-lambda_{n+1})T_{n+1}x_n$ for infinitely many nonexpansive maps $T_1,T_2,T_3,ldots$ in $X$ as well as for finitely many nonexpansive retraction. We establish several strong convergence results which generalize {10, Theorem 3.3] and [10, Theorem 4.1] from Hilbert space setting to Banach space setting.

Approximation of common fixed points of families of nonexpansive mappings

CUBIOTTI, Paolo;
2008-01-01

Abstract

Let $X$ be a reflexive and smooth Banach space which has a weakly sequentially continuous duality mapping. We consider in this paper the iteration scheme $x_{n+1}=lambda_{n+1}y+(1-lambda_{n+1})T_{n+1}x_n$ for infinitely many nonexpansive maps $T_1,T_2,T_3,ldots$ in $X$ as well as for finitely many nonexpansive retraction. We establish several strong convergence results which generalize {10, Theorem 3.3] and [10, Theorem 4.1] from Hilbert space setting to Banach space setting.
2008
File in questo prodotto:
File Dimensione Formato  
Cub_Taiw_2008.pdf

accesso aperto

Descrizione: Reprint articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 177.62 kB
Formato Adobe PDF
177.62 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1782070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 11
social impact