This work studies, in the degree q<=6 , the paths of length (q−1) of a connected graph G and the generators of the corresponding generalized graph ideal I_q(G), using only the incidence matrix of G. Such a problem is known for generalized graph ideals when q<=4 . The extension to higher degrees is made by applying different techniques of computation in the proofs.

q-PATHS OF A GRAPH AND INCIDENCE MATRIX II

IMBESI, Maurizio
2008-01-01

Abstract

This work studies, in the degree q<=6 , the paths of length (q−1) of a connected graph G and the generators of the corresponding generalized graph ideal I_q(G), using only the incidence matrix of G. Such a problem is known for generalized graph ideals when q<=4 . The extension to higher degrees is made by applying different techniques of computation in the proofs.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1841619
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact