Several reports have described a loss of endogenous antioxidants and molecular oxidative damage during acute pancreatitis. Since hyaluronic acid and chondroitin-4-sulfate possess antioxidant properties, the effect of the administration of these glycosaminoglycans in a cerulein-induced acute pancreatitis in rats was investigated. Cerulein administration produced pancreatic edema and a marked increase in serum lipase and amylase activity; induced a severe depletion of reduced glutathione, catalase, and superoxide dismutase levels; primed lipid peroxidation; and promoted neutrophil intervention. Intraperitoneal pretreatment of rats with hyaluronic acid or chondroitin-4-sulfate or with both compounds ameliorated pancreatic cell conditions; restored the endogenous antioxidants reduced glutathione, catalase and superoxide dismutase; limited cell membrane peroxidation; and reduced neutrophil activation. Our data confirm the antioxidant activity of these 2 glycosaminoglycans.
Administration of hyaluronic acid and chondroitin-4-sulfate limits endogenous antioxidant depletion and reduces cell damage in experimental acute pancreatitis
CAMPO, Giuseppe Maurizio;AVENOSO, Angela;CAMPO, Salvatore Giuseppe;FERLAZZO, Alida;CALATRONI, Alberto
2004-01-01
Abstract
Several reports have described a loss of endogenous antioxidants and molecular oxidative damage during acute pancreatitis. Since hyaluronic acid and chondroitin-4-sulfate possess antioxidant properties, the effect of the administration of these glycosaminoglycans in a cerulein-induced acute pancreatitis in rats was investigated. Cerulein administration produced pancreatic edema and a marked increase in serum lipase and amylase activity; induced a severe depletion of reduced glutathione, catalase, and superoxide dismutase levels; primed lipid peroxidation; and promoted neutrophil intervention. Intraperitoneal pretreatment of rats with hyaluronic acid or chondroitin-4-sulfate or with both compounds ameliorated pancreatic cell conditions; restored the endogenous antioxidants reduced glutathione, catalase and superoxide dismutase; limited cell membrane peroxidation; and reduced neutrophil activation. Our data confirm the antioxidant activity of these 2 glycosaminoglycans.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.