In the present paper, we aimed to verify whether the interaction of the glycoprotein D (gD) of herpes simplex 1 (HSV-1) with the HSV-1 receptor HVEM is involved in NF-κB-dependent protection against apoptosis by gD. To this purpose, first we utilized MAbs that interfere with gD/HVEM interaction and U937 cells that naturally express human HVEM on their surface. Pre-incubation with these MAbs, but not with a control antibody, partially reverted the protection of infectious HSV-1 towards anti-Fas induced apoptosis in U937 cells. Similarly, pre-incubation of UV-inactivated HSV-1 (UV-HSV-1) or recombinant gD with the same MAbs, significantly reduced the inhibition of Fas-mediated apoptosis by UV-HSV-1 or gD, respectively, in U937 cells. Moreover, coculture with stable transfectants expressing at surface level wild type gD protected U937 cells against Fas-induced apoptosis, while coculture with transfectants expressing a mutated form of gD, incapable to bind HVEM, did not protect. Finally, UV-HSV-1 protected against staurosporine-induced apoptosis in U937 cells as well as in the CHO transfectants expressing human HVEM on their surface, but not in the control CHO transfectants, which did not express HVEM. These results suggest that signaling triggered by binding of gD to HVEM could represent an additional mechanism of evasion from premature apoptotic death exerted by HSV-1-gD in HVEM-expressing cells, disclosing new opportunities of cell death manipulation by using gD preparations.

Involvement of gD/HVEM interaction in NF-kB-dependent inhibition of apoptosis by HSV-1 gD

SCIORTINO, Maria Teresa;MEDICI, Maria Antonietta;MARINO MERLO, FRANCESCA;ZACCARIA, daniela anna;GIUFFRE' CUCULLETTO, MARIA;VENUTI, ASSUNTA;BRAMANTI, Placido;MASTINO, Antonio
2008-01-01

Abstract

In the present paper, we aimed to verify whether the interaction of the glycoprotein D (gD) of herpes simplex 1 (HSV-1) with the HSV-1 receptor HVEM is involved in NF-κB-dependent protection against apoptosis by gD. To this purpose, first we utilized MAbs that interfere with gD/HVEM interaction and U937 cells that naturally express human HVEM on their surface. Pre-incubation with these MAbs, but not with a control antibody, partially reverted the protection of infectious HSV-1 towards anti-Fas induced apoptosis in U937 cells. Similarly, pre-incubation of UV-inactivated HSV-1 (UV-HSV-1) or recombinant gD with the same MAbs, significantly reduced the inhibition of Fas-mediated apoptosis by UV-HSV-1 or gD, respectively, in U937 cells. Moreover, coculture with stable transfectants expressing at surface level wild type gD protected U937 cells against Fas-induced apoptosis, while coculture with transfectants expressing a mutated form of gD, incapable to bind HVEM, did not protect. Finally, UV-HSV-1 protected against staurosporine-induced apoptosis in U937 cells as well as in the CHO transfectants expressing human HVEM on their surface, but not in the control CHO transfectants, which did not express HVEM. These results suggest that signaling triggered by binding of gD to HVEM could represent an additional mechanism of evasion from premature apoptotic death exerted by HSV-1-gD in HVEM-expressing cells, disclosing new opportunities of cell death manipulation by using gD preparations.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1875177
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 35
social impact