TNF-alpha is a mediator of lethality in experimental infections by group B streptococcus (GBS), an important human pathogen. Little is known of signal transduction pathways involved in GBS-induced TNF-alpha production. Here we investigate the role of mitogen-activated protein kinases (MAPKs) and NF-kappa B in TNF-alpha production by human monocytes stimulated with GBS or LPS, used as a positive control. Western blot analysis of cell lysates indicates that extracellular signal-regulated kinase 1/2 (ERK 1/2), p38, and c-Jun N-terminal kinase MAPKs, as well as I kappa B alpha, became phosphorylated, and hence activated, in both LPS- and GBS-stimulated monocytes. The kinetics of these phosphorylation events, as well as those of TNF-alpha production, were delayed by 30-60 min in GBS-stimulated, relative to LPS-stimulated, monocytes. Selective inhibitors of ERK 1/2 (PD98059 or U0126), p38 (SB203580), or NF-kappa B (caffeic acid phenetyl ester (CAPE)) could all significantly reduce TNF-alpha production, although none of the inhibitors used alone was able to completely prevent TNF-alpha release. However, this was completely blocked by combinations of the inhibitors, including PD98059-SB203580, PD98059-CAPE, or SB203580-CAPE combinations, in both LPS- and GBS-stimulated monocytes. In conclusion, our data indicate that the simultaneous activation of multiple pathways, including NF-kappa B, ERK 1/2, and p38 MAPKs, is required to induce maximal TNF-alpha production. Accordingly, in septic shock caused by either GBS or Gram-negative bacteria, complete inhibition of TNF-alpha release may require treatment with drugs or drug combinations capable of inhibiting multiple activation pathways.

Mitogen-activated protein kinases and NF-kappa B are involved in TNF-alpha responses to group B streptococci

MANCUSO, Giuseppe;MIDIRI, Angelina;BENINATI, Concetta;VALENTI, Andrea;NICOCIA, Giacomo;TETI, Diana;TETI, Giuseppe
2002-01-01

Abstract

TNF-alpha is a mediator of lethality in experimental infections by group B streptococcus (GBS), an important human pathogen. Little is known of signal transduction pathways involved in GBS-induced TNF-alpha production. Here we investigate the role of mitogen-activated protein kinases (MAPKs) and NF-kappa B in TNF-alpha production by human monocytes stimulated with GBS or LPS, used as a positive control. Western blot analysis of cell lysates indicates that extracellular signal-regulated kinase 1/2 (ERK 1/2), p38, and c-Jun N-terminal kinase MAPKs, as well as I kappa B alpha, became phosphorylated, and hence activated, in both LPS- and GBS-stimulated monocytes. The kinetics of these phosphorylation events, as well as those of TNF-alpha production, were delayed by 30-60 min in GBS-stimulated, relative to LPS-stimulated, monocytes. Selective inhibitors of ERK 1/2 (PD98059 or U0126), p38 (SB203580), or NF-kappa B (caffeic acid phenetyl ester (CAPE)) could all significantly reduce TNF-alpha production, although none of the inhibitors used alone was able to completely prevent TNF-alpha release. However, this was completely blocked by combinations of the inhibitors, including PD98059-SB203580, PD98059-CAPE, or SB203580-CAPE combinations, in both LPS- and GBS-stimulated monocytes. In conclusion, our data indicate that the simultaneous activation of multiple pathways, including NF-kappa B, ERK 1/2, and p38 MAPKs, is required to induce maximal TNF-alpha production. Accordingly, in septic shock caused by either GBS or Gram-negative bacteria, complete inhibition of TNF-alpha release may require treatment with drugs or drug combinations capable of inhibiting multiple activation pathways.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1891007
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 69
  • ???jsp.display-item.citation.isi??? 64
social impact