A space is star-Lindelof if for every open cover U, the cover $\{St(x; U) : x\in X\}$ has a countable subcover. A space X is centered-LindelÁof (linked-Lindelof) if every open cover has a $\sigma$-centered ($\sigma$-linked) subcover. We survey and generalize known results on finite products of star-Lindelof spaces and obtain some new. Then we consider infinite products and prove that, for a regular space X, $X^\tau$ is linked- (or centered-, or star-) LindelÁof for every cardinal $\tau$ $X^\tau$ is countably compact for every cardinal $\tau$. We observe that non-trivial box products are never linked-Lindelof .

Products of star-Lindelof and related spaces

BONANZINGA, Maddalena;
2001-01-01

Abstract

A space is star-Lindelof if for every open cover U, the cover $\{St(x; U) : x\in X\}$ has a countable subcover. A space X is centered-LindelÁof (linked-Lindelof) if every open cover has a $\sigma$-centered ($\sigma$-linked) subcover. We survey and generalize known results on finite products of star-Lindelof spaces and obtain some new. Then we consider infinite products and prove that, for a regular space X, $X^\tau$ is linked- (or centered-, or star-) LindelÁof for every cardinal $\tau$ $X^\tau$ is countably compact for every cardinal $\tau$. We observe that non-trivial box products are never linked-Lindelof .
2001
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1892089
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact