OBJECTIVE: Intracerebral hemorrhage (ICH) is a devastating clinical syndrome for which no truly efficacious therapy has yet been identified. In preclinical studies, erythropoietin (EPO) and its long-lasting analog, darbepoetin alfa, have been demonstrated to be neuroprotective in several models of neuronal insult. The objectives of this study were to analyze whether the systemic administration of recombinant human EPO (rHuEPO) and its long-lasting derivative darbepoetin alfa expedited functional recovery and brain damage in a rat model of ICH. METHODS: Experimental ICH was induced in rats by injecting autologous blood into the right striatum under stereotactic guidance. Subsequently, animals underwent placebo treatment, daily injections of rHuEPO, or weekly injections of darbepoetin alfa. Animals were killed 14 days after injury. RESULTS: Both rHuEPO and darbepoetin alfa were effective in reducing neurological impairment after injury, as assessed by the neurological tasks performed. rHuEPO- and darbepoetin alfa-treated animals exhibited a restricted brain injury with nearly normal parenchymal architecture. In contrast, the saline-treated group exhibited extensive cerebral cytoarchitectural disruption and edema. The number of surviving NeuN-positive neurons was significantly higher in the rats treated with rHuEPO and darbepoetin alfa compared with those that received saline (P < 0.05). CONCLUSION: These results demonstrate that weekly administered darbepoetin alfa confers behavioral and histological neuroprotection after ICH in rats similar to that of daily EPO administration. Administration of EPO and its long-lasting recombinant forms affords significant neuroprotection in an ICH model and may hold promise for future clinical applications.

NEUROPROTECTIVE EFFECT OF ERYTHROPOIETIN AND DARBEPOETIN ALFA AFTER EXPERIMENTAL INTRACEREBRAL HEMORRHAGE

GRASSO, Giovanni;SFACTERIA, Alessandra;MELI, Francesco;PASSALACQUA, Marcello;BUEMI, Michele;IACOPINO, Domenico
2009-01-01

Abstract

OBJECTIVE: Intracerebral hemorrhage (ICH) is a devastating clinical syndrome for which no truly efficacious therapy has yet been identified. In preclinical studies, erythropoietin (EPO) and its long-lasting analog, darbepoetin alfa, have been demonstrated to be neuroprotective in several models of neuronal insult. The objectives of this study were to analyze whether the systemic administration of recombinant human EPO (rHuEPO) and its long-lasting derivative darbepoetin alfa expedited functional recovery and brain damage in a rat model of ICH. METHODS: Experimental ICH was induced in rats by injecting autologous blood into the right striatum under stereotactic guidance. Subsequently, animals underwent placebo treatment, daily injections of rHuEPO, or weekly injections of darbepoetin alfa. Animals were killed 14 days after injury. RESULTS: Both rHuEPO and darbepoetin alfa were effective in reducing neurological impairment after injury, as assessed by the neurological tasks performed. rHuEPO- and darbepoetin alfa-treated animals exhibited a restricted brain injury with nearly normal parenchymal architecture. In contrast, the saline-treated group exhibited extensive cerebral cytoarchitectural disruption and edema. The number of surviving NeuN-positive neurons was significantly higher in the rats treated with rHuEPO and darbepoetin alfa compared with those that received saline (P < 0.05). CONCLUSION: These results demonstrate that weekly administered darbepoetin alfa confers behavioral and histological neuroprotection after ICH in rats similar to that of daily EPO administration. Administration of EPO and its long-lasting recombinant forms affords significant neuroprotection in an ICH model and may hold promise for future clinical applications.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1892521
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 46
social impact