The dumbbell graph, denoted by D-a,D-b,D-c is a bicyclic graph consisting of two vertex-disjoint cycles C-a and C-b joined by a path Pc+3 (C >= -1)having only its end-vertices in common with the two cycles. By using a new cospectral invariant for (r, r + 1)-almost regular graphs, we will show that almost all dumbbell graphs (without cycle C-4 as a subgraph) are determined by the adjacency spectrum. © 2009 Elsevier Inc. All rights reserved.

A note on the spectral characterization of dumbbell graphs

BELARDO, FRANCESCO;LI MARZI, Enzo
2009-01-01

Abstract

The dumbbell graph, denoted by D-a,D-b,D-c is a bicyclic graph consisting of two vertex-disjoint cycles C-a and C-b joined by a path Pc+3 (C >= -1)having only its end-vertices in common with the two cycles. By using a new cospectral invariant for (r, r + 1)-almost regular graphs, we will show that almost all dumbbell graphs (without cycle C-4 as a subgraph) are determined by the adjacency spectrum. © 2009 Elsevier Inc. All rights reserved.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1893662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact