After ascertaining that the C-p of water confined to 1.1 nm diameter pores had been used to reach the conjecture for a lambda-transition in supercooled bulk water, we argue that only three H2O molecules can fit across the 1.1 nm diameter pore. Two of these form a (one-molecule thick) nanoshell hydrogen bonded to the SiO2 pore wall. Hydrogen bonding or cooperative motions of the remaining one H2O molecule would not produce a "lambda-type transition.".
Does water need a lambda-type transition?
MALLAMACE, Francesco
2009-01-01
Abstract
After ascertaining that the C-p of water confined to 1.1 nm diameter pores had been used to reach the conjecture for a lambda-transition in supercooled bulk water, we argue that only three H2O molecules can fit across the 1.1 nm diameter pore. Two of these form a (one-molecule thick) nanoshell hydrogen bonded to the SiO2 pore wall. Hydrogen bonding or cooperative motions of the remaining one H2O molecule would not produce a "lambda-type transition.".File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.